Exact simulation of two-parameter Poisson-Dirichlet random variables

نویسندگان

چکیده

Consider a random vector $(V_{1}, \dots , V_{n})$ where $\{V_{k}\}_{k=1, n}$ are the first $n$ components of two-parameter Poisson-Dirichlet distribution $PD(\alpha \theta )$. In this paper, we derive decomposition for vector, and propose an exact simulation algorithm to sample from vector. Moreover, special case arises when $\theta /\alpha $ is positive integer, which present very fast modified using compound geometric representation decomposition. Numerical examples provided illustrate accuracy effectiveness our algorithms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vectors of two-parameter Poisson-Dirichlet processes

The definition of vectors of dependent random probability measures is a topic of interest in applications to Bayesian statistics. They, indeed, represent dependent nonparametric prior distributions that are useful for modelling observables for which specific covariate values are known. In this paper we propose a vector of two-parameter Poisson-Dirichlet processes. It is well-known that each com...

متن کامل

The two - parameter Poisson - Dirichlet point process

The two-parameter Poisson-Dirichlet distribution is a probability distribution on the totality of positive decreasing sequences with sum 1 and hence considered to govern masses of a random discrete distribution. A characterization of the associated point process (i.e., the random point process obtained by regarding the masses as points in the positive real line) is given in terms of the correla...

متن کامل

Distributions of Linear Functionals of Two Parameter Poisson – Dirichlet Random Measures

The present paper provides exact expressions for the probability distributions of linear functionals of the two-parameter Poisson– Dirichlet process PD(α, θ). We obtain distributional results yielding exact forms for density functions of these functionals. Moreover, several interesting integral identities are obtained by exploiting a correspondence between the mean of a Poisson–Dirichlet proces...

متن کامل

Quaderni di Dipartimento Vectors of two-parameter Poisson-Dirichlet processes

The definition of vectors of dependent random probability measures is a topic of interest in applications to Bayesian statistics. They, indeed, represent dependent nonparametric prior distributions that are useful for modelling observables for which specific covariate values are known. In this paper we propose a vector of two-parameter Poisson-Dirichlet processes. It is well-known that each com...

متن کامل

Wright-Fisher construction of the two-parameter Poisson-Dirichlet diffusion

The two-parameter Poisson–Dirichlet diffusion, introduced in 2009 by Petrov, extends the infinitely-many-neutral-alleles diffusion model, related to Kingman’s one-parameter Poisson–Dirichlet distribution and to certain Fleming–Viot processes. The additional parameter has been shown to regulate the clustering structure of the population, but is yet to be fully understood in the way it governs th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2021

ISSN: ['1083-6489']

DOI: https://doi.org/10.1214/20-ejp573